NetIQ Identity Manager 4.9.0

Security Target (ST)

Date: January 16, 2025

Version: 0.14
Prepared By: OpenText
Prepared For: OpenText

275 Frank Tompa Drive Waterloo ON N2L 0A1

Canada

Abstract

This document provides the basis for an evaluation of a specific Target of Evaluation (TOE), Identity Manager 4.9.0. This Security Target (ST) defines a set of assumptions about the aspects of the environment, a list of threats that the product intends to counter, a set of security objectives, a set of security requirements and the IT security functions provided by the TOE which meet the set of requirements.

Table of Contents

	Table of Contents	
	List of Tables	3
	List of Figures	4
1	Introduction	5
1.		
	•	
1.2		
1.3	\boldsymbol{c}	
1.4		
1.5	<i>6,</i>	
1.6		
	7. TOE Description	
1.7	7.1. Administration Workstation (Console):	8
1.7	7.2. Identity Applications (RBPM)	8
1.7	7.3. Identity Manager:	9
1.7	7.4. Reporting Server:	g
	7.5. Log Manager:	
	7.6. One SSO Provider:	
	7.7. Self Service Password Reset:	
	7.8. TOE Delivery:	
	8. TOE Environment	
	8.1. Virtual Machines	
	8.2. Hardware and Software Supplied by the IT Environment	
	8.3. Logical Boundary	
	8.4. TOE Security Functional Policies	
	8.4.1.Discretionary Access Control SFP	
	8.5. TOE Vendor Documentation / Guidance	
1.8	8.6. Features / Functionality NOT Included in the TOE	13
2.	Conformance Claims	14
2.	1. CC Conformance Claim	14
2.2	2. PP Claim	14
2.3	3. Package Claim	14
2.4	E	
	Security Problem Definition	
	1. Threats	
3.2	2. Organizational Security Policies	15
3.3	3. Assumptions	15
1	Security Objectives	17
4.		
4.2		
4.3	3 3	
	<i>y y</i>	
	3.1. Mapping of Objectives	
5.	Extended Components Definition	20
5.	Security Requirements	21
6.	7 1	
	1.1. Security Audit (FAU)	
	1.1.1.FAU_GEN.1 Audit Data Generation	
	-	
Ο.	.1.1.2.FAU_SAR.1 Audit Review	

6.1.2. Cryptographic Support (FCS)	22
6.1.2.1.FCS_CKM.1 Cryptographic Key Generation	
6.1.2.2.FCS_CKM.4 Cryptographic Key Destruction	23
6.1.2.3.FCS_COP.1 Cryptographic Operation	
6.1.3. Information Flow Control (FDP)	
6.1.3.1.FDP_ACC.1 Subset Access Control	
6.1.3.2.FDP_ACF.1 Security Attribute Based Access Control	
6.1.4. Identification and Authentication (FIA)	
6,1,4,1,FIA ATD.1 – User Attribute Definition.	
6.1.4.2.FIA_UAU.2 User Authentication before Any Action	
6.1.4.3.FIA_UID.2 User Identification before Any Action	
6.1.5. Security Management (FMT)	
6.1.5.1.FMT_MSA.1 Management of security attributes	
6.1.5.2.FMT_MSA.2 Secure Security Attributes	
6.1.5.3.FMT_MSA.3 Static Attribute Initialization	
6.1.5.4.FMT_MTD.1 Management of TSF Data	
6.1.5.5.FMT_SMF.1 Specification of Management Functions	
6.1.5.6.FMT_SMR.1 Security Roles	
6.1.6. Protection of the TSF (FPT)	
6.1.6.1.FPT_TDC.1 Inter-TSF Basic TSF Data Consistency	
6.1.7. Trusted Path / Channel (FTP)	
6.1.7.1.FTP ITC.1 Inter-TSF trusted channel	
6.1.7.2.FTP_TRP.1 Trusted Path	
6.2. Security Assurance Requirements	
6.3. Security Assurance Requirements 6.3. Security Requirements Rationale	
6.3.1. Security Functional Requirements	
6.3.2. Dependency Rationale	
A •	
6.3.3. Sufficiency of Security Requirements6.3.4. Security Assurance Requirements	
•	
6.3.5. Security Assurance Requirements Rationale	
6.3.6. Security Assurance Requirements Evidence	
7. TOE Summary Specification	34
7.1. TOE Security Functions	34
7.2. Security Audit	34
7.3. Identification and Authentication	34
7.4. User Data Protection	35
7.5. Security Management	35
7.6. Protection of the TSF	36
7.7. Trusted Path / Channels	36
7.7.1. Trusted Channel	36
7.7.2. Trusted Path	36
7.8. Cryptographic Support	36
List of Tables	
Table 1 – ST Organization and Section Descriptions	6
Table 2 – Acronyms Used in Security Target	
Table 3 – Virtual Machine Environment Requirements	
Table 4 – IT Environment Component Requirements	
Table 5 – Logical Boundary Descriptions	
Table 6 - Threats Addressed by the TOE.	
Tuble 0 Through Addressed by the TOD	

Table 7 - Organizational Security Policies	15
Table 8 - Assumptions	
Table 9 – TOE Security Objectives	
Table 10 – Operational Environment Security Objectives	17
Table 11- Mapping of Assumptions, Threats, Policies and ORSP s to Security Objectives	18
Table 12 – Mapping of Threats, Policies, and Assumptions to Objectives	19
Table 13 – TOE Security Functional Requirements	21
Table 14 – Management of TSF data	25
Table 15 – Mapping of TOE Security Functional Requirements and Objectives	29
Table 16 - Mapping of SFRs to Dependencies and Rationales	27
Table 17 - Rationales For TOE SFRs to Objectives	28
Table 18 – Security Assurance Requirements at EAL3	29
Table 19 – Security Assurance Rationale and Measures	33
Table 20 – Roles and Functions	
Table 21 – CAVP	37
List of Figures	
Figure 1 – TOE Deployment with Subsystems	7
Figure 2 – Sample Download List	

1. Introduction

This section identifies the Security Target (ST), Target of Evaluation (TOE), Security Target organization, document conventions, and terminology. It also includes an overview of the evaluated product.

1.1. **Security Target Reference:**

ST Title NetIQ Identity Manager 4.9.0 Security Target:

ST Revision 0.14

ST Publication Date January 16, 2025 ST Author Dawn Adams

1.2. **TOE Reference**

TOE Reference NetIQ Identity Manager 4.9.0

TOE Developer OpenText Evaluation Assurance Level (EAL) EAL3+

Note: The file download name is: Identity_Manager_4.9.0_Linux.tar.gz.

Note: The official name of the product is NetIQ Identity Manager 4.9.0 Advanced Edition. The released product can be uniquely identified as: NetIQ Identity Manager 4.9.0. The product name may also be abbreviated as Identity Manager 4.9.0 AE, Identity Manager, IDM 4.9.0 AE or IDM 4.9.0 or simply IDM. Finally the TOE, if examined for the build number will be identified as NetIQ Identity Manager 4.9.0. For the purpose of this document all of the above references are equivalent, and the document may refer to the product simply as IDM or the TOE.

1.3. **Document Organization**

This Security Target follows the following format:

SECTION	TITLE	DESCRIPTION
1	Introduction	Provides an overview of the TOE and defines the hardware and software that make up the TOE as well as the physical and logical boundaries of the TOE
2	Conformance Claims	Lists evaluation conformance to Common Criteria versions, Protection Profiles, or Packages where applicable
3	Security Problem Definition	Specifies the threats, assumptions and organizational security policies that affect the TOE
4	Security Objectives	Defines the security objectives for the TOE/operational environment and provides a rationale to demonstrate that the security objectives satisfy the threats
5	Extended Components Definition	Describes extended components of the evaluation (if any)
6	Security Requirements	Contains the functional and assurance requirements for this TOE

SECTION	TITLE	DESCRIPTION
7	TOE Summary Specification	Identifies the IT security functions provided by the TOE and also identifies the assurance measures targeted to meet the assurance requirements.

Table 1 – ST Organization and Section Descriptions

1.4. **Document Conventions**

The notation, formatting, and conventions used in this Security Target are consistent with those used in Version 3.1 of the Common Criteria. Selected presentation choices are discussed here to aid the Security Target reader. The Common Criteria allows several operations to be performed on functional requirements: The allowable operations defined in Part 2 of the Common Criteria are *refinement*, *selection*, *assignment* and *iteration*.

- The refinement operation is used to add detail to a requirement, and thus further restricts a requirement. Refinement of security requirements is denoted by **bold text**. Any text removed is indicated with a strikethrough format (Example: TSF).
- The selection operation is picking one or more items from a list in order to narrow the scope of a component element. Selections are denoted by *italicized* text.
- The assignment operation is used to assign a specific value to an unspecified parameter, such as the length of a password. An assignment operation is indicated by showing the value in square brackets, i.e. [assignment_value(s)].
- Iterated functional and assurance requirements are given unique identifiers by appending to the base requirement identifier from the Common Criteria an iteration number inside parenthesis, for example, FMT_MTD.1.1 (1) and FMT_MTD.1.1 (2) refer to separate instances of the FMT_MTD.1 security functional requirement component.

When not embedded in a Security Functional Requirement, italicized text is used for both official document titles and text meant to be emphasized more than plain text.

1.5. **Document Terminology**

The following table describes the acronyms used in this document:

TERM	DEFINITION	
CC	Common Criteria version 3.1	
EAL	Evaluation Assurance Level	
IDM	Identity Manager	
IDV	Identity Vault	
IGA	Identity Governance and Administration	
NMAS	NetIQ Modular Authentication Service	
NTP	Network Time Protocol	
ORSP	Organizational Security Policy	
OSP	One SSO Provider	
SSO	Single Sign On	
SFP	Security Function Policy	
SFR	Security Functional Requirement	
SLM	Sentinel Log Manager	

TERM	DEFINITION
SSPR	Self Service Password Reset
ST	Security Target
TOE	Target of Evaluation
TSF	TOE Security Function

Table 2 - Acronyms Used in Security Target

1.6. **TOE Overview**

The TOE is NetIQ Identity Manager 4.9.0. NetIQ Identity Manager provides data sharing and synchronization services which enable applications, directories, and databases to share information. It links scattered information and enables you to establish policies that govern automatic updates to designated systems when identity changes occur.

Identity Manager provides the foundation for account provisioning, security, single sign-on, user self-service, authentication, authorization, automated workflow, and Web services. It allows you to integrate, manage, and control your distributed identity information so you can securely deliver the right resources to the right people.

The following diagram shows a typical TOE deployment:

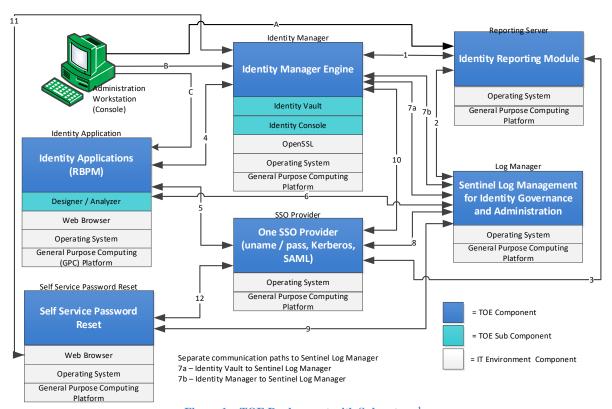


Figure 1 – TOE Deployment with Subsystems¹

The TOE provides the following functions: data synchronization, role management, auditing/reporting, and management.

¹¹ Note the Administration Workstation Console is not included in the evaluation as there is no code that is added to it to make it explicitly a workstation console. It is included in the document as a component required for access to the TOE.

- Data synchronization, including password synchronization, is provided by the base components of the Identity Manager solution: the Identity Vault, Identity Manager engine, drivers, Remote Loader, and connected applications
- Role management is provided by the User Application
- Auditing and reporting are provided by the Identity Reporting Module

1.7. **TOE Components**

TOE Components	Release Tags	
Identity Application	IDM4.9.0.0000	
Designer	IDM4.9.0.0000	
Analyzer	IDM4.9.0.0000	
Identity Vault	IDM4.9.0.0000	
IDConsole	IDConsole1.7.2.0000	
Identity Reporting Module	NetIQ Identity Reporting version 7.2.0000	
Log Manager	Sentinel Log Manager for IGA 8.6.1.0000	
One SSO Provider	6.7.0.0000	
Self Service Password Reset	SSPR v4.7.0.2	
Overall CD Image	IDM4.9.0.0000	

1.8. **TOE Description**

NetIQ Identity Manager 4.9.0 (IDM) is a comprehensive identity management suite. It provides an intelligent identity framework that leverages your existing IT assets and new computing models like Software as a Service (SaaS) by reducing cost and ensuring compliance across physical, virtual, and cloud environments. With the NetIQ Identity Manager solution, you can make sure that your business has the most current user identity information. You can retain control at the enterprise level by managing, provisioning, and de-provisioning identities within the firewall and extending to the cloud. Through streamlined user administration and processes, Identity Manager helps organizations reduce management costs, increase productivity and security, and comply with government regulations. The TOE is a software TOE.

1.8.1. **Administration Workstation (Console):**

The Administration Workstation (Console) is used to access the Identity Applications (RBPM), Identity Manager, and the Reporting Server. Each of these functions is described below. The Console is required for testing but is not part of the TOE.

1.8.2. **Identity Applications (RBPM)**

The Identity Applications (RBPM) houses the Designer / Analyzer functions. The Identity Application is a Web application (browser-based) that gives users and business administrators the ability to perform a variety of identity self-service and roles provisioning tasks, including managing passwords and identity data, initiating and monitoring provisioning and role assignment requests, managing the approval process for provisioning requests, and verifying attestation reports. It includes the workflow engine that controls the routing of requests through the appropriate approval process. Designer, aka Designer for Identity Manager helps you design, test, document, and deploy Identity Manager solutions in a network or test environment. Analyzer, aka NetIQ Analyzer for Identity Manager is an identity management

toolset that helps you ensure that internal data quality policies are adhered to by providing data analysis, data cleansing, data reconciliation, and data monitoring/reporting. Analyzer lets you analyze, enhance, and control all data stores throughout the enterprise.

1.8.3. **Identity Manager:**

The Identity Manager houses the Identity Manager Engine (and the Identity Vault which contains the Identity Application's data) and Identity Console. The Identity Manager Engine synchronizes identity data between applications. For example, data synchronized from a PeopleSoft system to Lotus Notes is first added to the Identity Vault and then sent to the Lotus Notes system. In addition, the Identity Vault stores information specific to Identity Manager, such as driver configurations, parameters, and policies.

The following packages are used to provide cryptographic functions, and are not included in the TOE boundary. NetIQ eDirectory is used for the Identity Vault and eDirectory provides access to the OpenSSL Cryptographic functionality.

1.8.4. **Reporting Server:**

The reporting server houses the Identity Reporting Module. The Identity Reporting Module generates reports that show critical business information about various aspects of your Identity Manager configuration, including information collected from Identity Vaults and managed systems such as Active Directory or SAP. The reporting module provides a set of predefined report definitions you can use to generate reports. In addition, it gives you the option to import custom reports defined in a third-party tool. The user interface for the reporting module makes it easy to schedule reports to run at off-peak times to optimize performance.

The IDM Tools are used to manage the Identity Manager solution. This includes functions to:

- Analyze, enhance, and control all data stores throughout the enterprise
- Design, deploy, and document the TOE
- Manage Identity Manager and receive real-time health and status information about the Identity Manager system
- Define and maintain which authorizations are associated with which business roles

1.8.5. **Log Manager:**

The Log Manager, also known as Sentinel Log Manager for Identity Governance and Administration (SLM for IGA), collects and acknowledges receipt of auditing data from all aspects of the product.

1.8.6. **One SSO Provider:**

The One SSO Provider, (also known as OSP) is a single interface for access authentication. This provider can handle username / password, Kerberos, and SAML tokens.

1.8.7. **Self Service Password Reset:**

Self Service Password Reset (SSPR) allows users to enroll, update, and reset their passwords without administrative intervention in the Identity Vault (IDV).

Note: that the components above can be installed on one or multiple distributed systems. Also, the hardware, operating systems and third-party support software (e.g. DBMS) on each of the systems are excluded from the TOE boundary.

1.8.8. **TOE Delivery:**

The TOE software is provided to customers via secure download from the download portal (https://sld.microfocus.com/mysoftware/download/downloadCenter) The software is available as either a gnu zip (.gz), iso formatted optical disk (.iso) depending on your destination platform. Once downloaded, and extracted, the setup files can be executed to perform the installation.

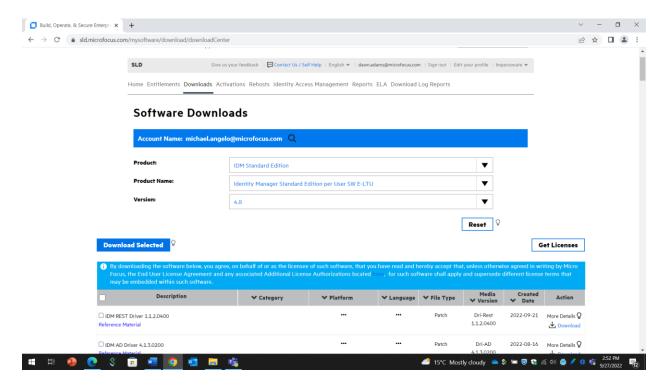


Figure 2 – Sample Download List

1.9. **TOE Physical Scope**

1.9.1. **Virtual Machines**

The following TOE components can be installed in virtual machines (VM).

- Console / Administration Workstation (Identity Applications)
- Identity Manager
- Reporting Server
- Sentinel Log Manager
- One SSO Provider
- Self Service Password Reset (SSPR)

The hardware and software requirements for the operational environment to support the VM are listed in the table below:

Category	Console / Administration Workstation (Identity Applications ²)	Identity Manager (Identity Manager Engine)	Reporting Server (Identity Reporting Module)	Log Manager (SLM for Identity Gov & Adm)	SSO Provider (OneSSO Provider)	Self Service Password Reset (SSPR)
Processor	2 CPU cores	2 CPU cores	2 CPU cores	4 to 8 CPU cores	2 CPU cores	2 CPU cores
Memory	8 GB	8 GB	8 GB	8 to 16 GB	8 GB	8 GB

Table 3 – Virtual Machine Environment Requirements

1.9.2. Hardware and Software Supplied by the IT Environment

The TOE consists of a set of software applications run on one or multiple distributed systems. The TOE requires the following software components as part of the evaluated configuration:

Component	Requirements
Administration Workstation	Mozilla Firefox 65
Operating system	SUSE Linux Enterprise Server 15 SP5
OpenSSL FIPS Object Module	Environment supplied cryptography

Table 4 – IT Environment Component Requirements

The following supported operating systems and software were not included in the evaluated configuration:

Linux Server versions: RHEL 7.9, RHEL 8.7, RHEL 9.0, RHEL 9.1

Windows Server versions: 2019, 2022

Google Chrome Internet Explorer

In addition to the platform requirements mentioned above, the following hardware resources are needed in order to install and configure Identity Manager on each platform:

- A minimum of 8 GB RAM
- 15 GB available disk space to install all the components.
- Additional disk space to configure and populate data. This might vary depending on your connected systems and number of objects in the Identity Vault.

For server-based components, it is recommended that the platform have a minimum of 2 CPUs or cores.

1.9.3. **Logical Boundary**

This section outlines the boundaries of the security functionality of the TOE; the logical boundary of the TOE includes the security functionality described in the following table:

² The system requirements also apply to the following components that you use with the identity applications: PostgreSQL, Tomcat, OpenText One SSO Provider (OSP), and OpenText Self Service Password Reset.

TSF	DESCRIPTION
Security Management	The TOE restricts the ability to enable, modify and disable security policy rules and user roles to an authorized Administrator. The TOE also provides the functions necessary for effective management of the TOE security functions. Administrators configure the TOE with the Management Console via Web-based connection.
Security Audit	The TOE supports the provision of log data from each system component, such as user login/logout and incident/ticket management actions. It also records security events such as failed login attempts, etc. Audit trails can be stored for later review and analysis.
Cryptographic Support	The TOE trusted channels and inter-TOE communications are protected by HTTPS/TLS v1.2.
Identification and Authentication	The TOE enforces individual I&A. Operators must successfully authenticate using a unique identifier and password prior to performing any actions on the TOE.
Protection of the TSF	Inter-TSF basic TSF data consistency requires that passwords are protected
User Data Protection	The TOE enforces discretionary access rules using an access control list with user attributes.
Trusted Path / Channels	The TOE utilizes HTTPS/TLS to provide trusted paths and inter-TSF trusted channels.

Table 5 – Logical Boundary Descriptions

1.9.4. **TOE Security Functional Policies**

The TOE supports the following Security Functional Policy:

1.9.4.1. **Discretionary Access Control SFP**

The TOE implements an access control SFP named *Discretionary Access Control SFP*. This SFP determines and enforces the privileges associated with operator roles. An authorized administrator can define specific services available to administrators and users via the Management Console.

1.9.5. **TOE Vendor Documentation / Guidance**

In addition to the documentation generated for the certification, the TOE includes the following product and guidance documentation generated by OpenText:

Identity Manager 4.9 Release Notes	May 2024
Quick Start Guide for Installing NetIQ Identity	May 2024
Manager 4.9	
Quick Start Guide for Installing or Upgrading	May 2024
NetIQ Identity Manager 4.9 Standard Edition	
NetIQ Identity Manager	May 2024
Overview and Planning Guide	•
NetIQ® Identity Manager Install and Upgrade Guide for	May 2024
Linux	

NetIQ® Identity Manager Install and Upgrade Guide for	May 2024
Windows	
NetIQ® Identity Manager Administrator's Guide to the	May 2024
Identity Applications	
NetIQ® Identity Manager User's Guide to the Identity	May 2024
Applications	
NetIQ Identity Manager Administrator's Guide for	May 2024
Drivers	

1.9.6. **Features / Functionality NOT Included in the TOE**

OpenSSL in the environment providing cryptographic functions for the establishment of HTTPS/TLS v1.2 sessions for secure communications.

2. Conformance Claims

2.1. **CC Conformance Claim**

The TOE is Common Criteria Version 3.1 Revision 5 (April 2017) Part 2 conformant and Part 3 conformant.

2.2. **PP Claim**

The TOE does not claim conformance to any registered Protection Profile.

2.3. **Package Claim**

The TOE claims conformance to the EAL3 assurance package defined in Part 3 of the Common Criteria Version 3.1 Revision 5 (April 2017). The TOE does not claim conformance to any functional package. The TOE EAL3 assurance package is augmented with ALC_FLR.3.

2.4. **Conformance Rationale**

No conformance rationale is necessary for this evaluation since this Security Target does not claim conformance to a Protection Profile.

3. Security Problem Definition

In order to clarify the nature of the security problem that the TOE is intended to solve, this section describes the following:

- Any known or assumed threats to the assets against which specific protection within the TOE or its environment is required.
- Any organizational security policy statements or rules with which the TOE must comply.
- Any assumptions about the security aspects of the environment and the manner in which the TOE is intended to be used.

This chapter identifies assumptions as A. assumption, threats as T. threat and policies as P. policy.

3.1. Threats

The following are threats identified for the TOE and the IT System (or operating environment) the TOE monitors. The TOE itself has threats and the TOE is also responsible for addressing threats to the environment in which it resides. The assumed level of expertise of the attacker for all threats is unsophisticated.

The TOE addresses the following threats:

THREAT	DESCRIPTION
T.NO_AUTH	An unauthorized user may gain access to the TOE and alter the TOE configuration.
T.NO_PRIV	An authorized user of the TOE exceeds his/her assigned security privileges resulting in unauthorized modification of the TOE configuration and/or data.
T.USER_ACCESS_DENY	An authorized user may be able to change user authentication data and or user access policies and deny their access to it later.
T.PROT_TRANS	An unauthorized user may be able to gather information from communications between components.

Table 6 - Threats Addressed by the TOE

3.2. **Organizational Security Policies**

The TOE meets the following organizational security policies:

ASSUMPTION	DESCRIPTION
P.REMOTE_DATA	Passwords and account information from network-attached systems shall be monitored and managed.

Table 7 – Organizational Security Policies

3.3. **Assumptions**

The TOE is assured to provide effective security measures in a co-operative non-hostile environment only if it is installed, managed, and used correctly. The following specific conditions are assumed to exist in an environment where the TOE is employed.

ASSUMPTION	DESCRIPTION
A.MANAGE	Administrators of the TOE are assumed to be appropriately trained to undertake the installation, configuration and management of the TOE in a secure and trusted manner.
A.NOEVIL	Administrators of the TOE and users on the local area network are not careless, willfully negligent or hostile.
A.LOCATE	The processing platforms on which the TOE resides are assumed to be located within a facility that provides controlled access.
A.TIMESOURCE	The environment provides the TOE with a reliable timestamp.
A.ENV_PROT	The environment provides security domains for TOE execution.
A.CRYPTO	The environment provides cryptography used by the TOE.

Table 8 – Assumptions

NOTE: The TOE uses cryptography provided by the environment. The TOE's use of cryptography is being evaluated. The actual cryptographic implementation is not being evaluated.

4. Security Objectives

4.1. **Security Objectives for the TOE**

The IT security objectives for the TOE are addressed below:

OBJECTIVE	DESCRIPTION
O.MANAGE_DATA	The TOE shall provide a means to manage secrets and data associated with remote IT systems.
O.MANAGE_POLICY	The TOE shall provide a workflow to manage authentication and access control policies.
O.SEC_ACCESS	The TOE shall ensure that only those authorized users and applications are granted access to security functions and associated data.
O.TRANS_PROT	The TOE shall provide mechanisms to protect data that is in transit between elements within the TOE.

Table 9 – TOE Security Objectives

4.2. **Security Objectives for the Operational Environment**

The security objectives for the operational environment are addressed below:

OBJECTIVE	DESCRIPTION
OE.TIME	The TOE operating environment shall provide a reliable and accurate timestamp.
OE.ENV_PROTECT	The TOE operating environment shall provide mechanisms to isolate the TOE Security Functions (TSF) and assure that TSF components cannot be tampered with or bypassed.
OE.PERSONNEL	Authorized administrators are non-hostile and follow all administrator guidance and must ensure that the TOE is installed, managed, and operated in a secure manner.
OE.PHYSEC	The facility surrounding the processing platform in which the TOE resides must provide a controlled means of access into the facility.
OE.CRYPTO	The environment provides the cryptography required by the TOE for the establishment of secure communications.

Table 30 – Operational Environment Security Objectives

4.3. **Security Objectives Rationale**

This section provides the summary that all security objectives are traced back to aspects of the addressed assumptions, threats, and Organizational Security Policies.

OBJECTIVES THREATS/ ASSUMPTIONS/ POLICIES	O.MANAGE_DATA	O.MANAGE_POLICY	O.SEC_ACCESS	O.TRANS_PROT	OE.TIME	OE.PERSONNEL	OE.PHYSEC	OE.ENV_PROTECT	OE.CRYPTO
A.MANAGE						✓			

OBJECTIVES THREATS/ ASSUMPTIONS/ POLICIES	O.MANAGE_DATA	O.MANAGE_POLICY	O.SEC_ACCESS	O.TRANS_PROT	OE.TIME	OE.PERSONNEL	OE.PHYSEC	OE.ENV_PROTECT	OE.CRYPTO
A.NOEVIL						✓			
A.LOCATE							✓		
A.TIMESOURCE					✓				
A.ENV_PROT								\	
A.CRYPTO									✓
T.NO_AUTH			✓						
T.NO_PRIV			✓						
T.USER_ACCESS_DENY		✓							
T.PROT_TRANS				✓					
P. REMOTE_DATA	✓								

Table 4 – Mapping of Assumptions, Threats, Policies and OSP s to Security Objectives

4.3.1. **Mapping of Objectives**

. Mapping of obje	, cur ob				
ASSUMPTION /THREAT/ POLICY	RATIONALE				
A.MANAGE	This assumption is addressed by:				
	 OE.PERSONNEL, which ensures that the TOE is managed and administered by in a secure manner by a competent and security aware personnel in accordance with the administrator documentation. This objective also ensures that those responsible for the TOE install, manage, and operate the TOE in a secure manner. 				
A.NOEVIL	This assumption is addressed by:				
	OE.PERSONNEL, which ensures that the TOE is managed and administered by in a secure manner by a competent and security aware personnel in accordance with the administrator documentation. This objective also ensures that those responsible for the TOE install, manage, and operate the TOE in a secure manner.				
A.LOCATE	This assumption is addressed by:				
	 OE.PHYSEC which ensures that the facility surrounding the processing platform in which the TOE resides provides a controlled means of access into the facility. 				

ASSUMPTION /THREAT/ POLICY	RATIONALE
A.TIMESOURCE	This assumption is addressed by:
	OE.TIME, which ensures the provision of an accurate time source.
A.CRYPTO	This assumption is addressed by
	OE.CRYPTO which ensures the TOE has access to cryptographic algorithms to establish secure communications.
A.ENV_PROT	This assumption is addressed by:
	 OE.ENV_PROTECT, which ensures the TOE security functionality Is not bypassed.
T.NO_AUTH	This threat is countered by the following:
	O.SEC_ACCESS, which ensures that the TOE allows access to the security functions, configuration, and associated data only by authorized users and applications.
T.NO_PRIV	This threat is countered by:
	 O.SEC_ACCESS, which ensures that the TOE allows access to the security functions, configuration, and associated data only by authorized users and applications.
T.PROT_TRANS	This threat is countered by:
	O.TRANS_PROT, which protects data that is in transit between elements within the TOE.
P.REMOTE_DATA	This organizational security policy is enforced by: O.MANAGE_DATA, which ensures that the TOE provide a means to manage secrets and data associated with remote IT systems.
T.USER_ACCESS_DENY	This threat is countered by:
	 O.MANAGE_POLICY which ensures that the TOE provides a workflow to manage authentication and access control policies.

Table 5 – Mapping of Threats, Policies, and Assumptions to Objectives

Extended Components DefinitionThis Security Target does not include any extended components. **5**.

6. Security Requirements

The security requirements that are levied on the TOE and the IT environment are specified in this section of the ST.

6.1. **Security Functional Requirements**

The functional security requirements for this Security Target consist of the following components from Part 2 of the CC, which are summarized in the following table:

CLASS_FAMILY **CLASS HEADING** DESCRIPTION FAU_GEN.1 Audit Data Generation Security Audit FAU_SAR.1 **Audit Review** FDP ACC.1 **Subset Access Control** User Data Protection FDP_ACF.1 Security Attribute Based Access Control FCS_CKM.1 Cryptographic Key Generation Cryptographic Support FCS_CKM.4 Cryptographic Key Destruction FCS_COP.1 Cryptographic Operation FIA_ATD.1 **User Attribute Definition** Identification and FIA_UID.2 User Identification before Any Action Authentication FIA_UAU.2 User Authentication before Any Action FMT_MSA.1 Management of Security Attributes FMT_MSA.2 Secure Security Attributes FMT_MSA.3 Static Attribute Initialization Security Management FMT_MTD.1 Management of TSF Data FMT SMF.1 **Specification of Management Functions** FMT_SMR.1 **Security Roles** Protection of the TSF FPT_TDC.1 Inter-TSF basic TSF data consistency FTP ITC.1 Trusted Channel

Table 13 – TOE Security Functional Requirements

6.1.1. **Security Audit (FAU)**

Trusted Path / Channels

6.1.1.1. **FAU_GEN.1 Audit Data Generation**

FAU_GEN.1.1 The TSF shall be able to generate an audit record of the following auditable events:

Trusted Path

- a) Start-up and shutdown of the audit functions;
- b) All auditable events for the [not specified] level of audit; and
- c) [User login/logout and;
- d) Login failures]

FTP TRP.1

- FAU_GEN.1.2 The TSF shall record within each audit record at least the following information:
 - a) Date and time of the event, type of event, subject identity (if applicable), and the outcome (success or failure) of the event; and
 - b) For each audit event type, based on the auditable event definitions of the functional components included in the PP/ST, [no other audit relevant information].

6.1.1.2. **FAU_SAR.1** Audit Review

- FAU_SAR.1.1 The TSF shall provide [the Administrator] with the capability to read [all audit data generated within the TOE] from the audit records.
- FAU_SAR.1.2 The TSF shall provide the audit records in a manner suitable for the user to interpret the information.

6.1.2. **Cryptographic Support (FCS)**

6.1.2.1. FCS_CKM.1 Cryptographic Key Generation

FCS_CKM.1.1 The TSF shall generate cryptographic keys in accordance with a specified cryptographic key generation algorithm [See table] and specified cryptographic key sizes [see table that meet the following: [see table].

Operation	Algorithm	Key Size	Standard
Encryption and Decryption in support of TLS	AES GCM mode (Advanced Encryption Standard)	128, 256	FIPS PUB 197 [AES], NIST SP 800-38D [GCM]
Key Generation in support of TLS	DRBG (Deterministic Random Bit Generation)	Hash DRBG	SP 800-90A
Key agreement in support of TLS	ECDHE		NIST SP 800- 56A [Key Agreement]
Keyed-Hash Message Authentication in support of TLS	HMAC-SHA2-256, HMAC-SHA2-384		FIPS PUB 198-1
Secure Hash in support of TLS	SHA-256, SHA-384		FIPS PUB 180-4

Asymmetric	RSA	2048	FIPS PUB 186-4
cryptography in			
support of TLS			

Application Note: The TOE's use of environment cryptography is being evaluated, not the cryptographic implementation.

6.1.2.2. **FCS_CKM.4 Cryptographic Key Destruction**

FCS_CKM.4.1 The TSF shall destroy cryptographic keys in accordance with a specified cryptographic key destruction method [overwrite with 0s, then 1s, then 0s, then random characters] that meets the following: [FIPS 140-2].

Application Note: The TOE's use of environment cryptography is being evaluated, not the cryptographic implementation.

6.1.2.3. **FCS_COP.1 Cryptographic Operation**

FCS_COP.1.1 The TSF shall perform [see table] in accordance with a specified cryptographic algorithm [see table] and cryptographic key sizes [see table] that meet the following: [see table].

Operation	Algorithm	Key Size	Standard
Encryption and Decryption in support of TLS	AES GCM mode (Advanced Encryption Standard)	128, 256	FIPS PUB 197 [AES], NIST SP 800-38D [GCM]
Key Generation in support of TLS	DRBG (Deterministic Random Bit Generation)	Hash DRBG	SP 800-90A
Key agreement in support of TLS	ECDHE		NIST SP 800- 56A [Key Agreement]
Keyed-Hash Message Authentication in support of TLS	HMAC-SHA2-256, HMAC-SHA2-384		FIPS PUB 198-1
Secure Hash in support of TLS	SHA-256, SHA-384		FIPS PUB 180-4
Asymmetric cryptography in support of TLS	RSA	2048	FIPS PUB 186-4

Application Note: The TOE's use of environment cryptography is being evaluated, not the cryptographic implementation.

6.1.3. **Information Flow Control (FDP)**

6.1.3.1. **FDP_ACC.1 Subset Access Control**

FDP_ACC.1.1 The TSF shall enforce the [Discretionary Access Control SFP] on [

Subjects: All users

Objects: System reports, component audit logs, TOE configuration,

operator account attributes Operations: all user actions]

6.1.3.2. FDP_ACF.1 Security Attribute Based Access Control

FDP_ACF.1.1 The TSF shall enforce the [Discretionary Access Control SFP]to objects

based on the following: [

Subjects: All users

Objects: System reports, component audit logs, TOE configuration,

operator account attributes

Operations: all user actions]

FDP_ACF.1.2 The TSF shall enforce the following rules to determine if an operation

among controlled subjects and controlled objects is allowed: [

Verify the user is on the ACL and is authorized to perform the

operation].

FDP_ACF.1.3 The TSF shall explicitly authorize access of subjects to objects based

on the following additional rules: [password restrictions, login

restrictions, time-based access controls, ip access controls].

FDP_ACF.1.4 The TSF shall explicitly deny access of subjects to objects based on the

following additional rules [password restrictions, login restrictions,

time-based access controls, IP access controls].

6.1.4. **Identification and Authentication (FIA)**

6.1.4.1. **FIA ATD.1 - User Attribute Definition**

FIA_ATD.1.1 The TSF shall maintain the following list of security attributes belonging to individual users: [User Identity, Authentication Status,

6.1.4.2. FIA_UAU.2 User Authentication before Any Action

FIA_UAU.2.1 The TSF shall require each user to be successfully authenticated before allowing any other TSF-mediated actions on behalf of that user.

6.1.4.3. **FIA_UID.2 User Identification before Any Action**

FIA_UID.2.1 The TSF shall require each user to be successfully identified before allowing any other TSF-mediated actions on behalf of that user.

6.1.5. **Security Management (FMT)**

6.1.5.1. **FMT_MSA.1 Management of security attributes**

FMT_MSA.1.1 The TSF shall enforce the [Discretionary Access Control SFP] to restrict the ability to [query, modify, delete] the security attributes [Accounts, privileges, ACLs] to [Administrator].

6.1.5.2. **FMT_MSA.2 Secure Security Attributes**

FMT_MSA.2.1 The TSF shall ensure that only secure values are accepted for [security attributes listed with Discretionary Access Control SFP].

6.1.5.3. **FMT_MSA.3 Static Attribute Initialization**

- FMT_MSA.3.1 The TSF shall enforce the [Discretionary Access Control SFP] to provide [restrictive] default values for security attributes that are used to enforce the SFP.
- FMT_MSA.3.2 The TSF shall allow the [Administrator] to specify alternative initial values to override the default values when an object or information is created.

6.1.5.4. **FMT_MTD.1 Management of TSF Data**

FMT_MTD.1.1 The TSF shall restrict the ability to [control] the [data described in the table below] to [Administrator]:

DATA	CHANGE	QUERY	MODIFY	DELETE	CLEAR
Discretionary Access Control SFP	✓	✓	✓	✓	✓
User Account Attributes		✓	✓		
Audit Logs		✓			
Date/Time			✓		

Table 64 - Management of TSF data

6.1.5.5. **FMT_SMF.1 Specification of Management Functions**

FMT_SMF.1.1 The TSF shall be capable of performing the following management functions:

- a) Create accounts
- b) Modify accounts
- Define privilege levels Change Default, Query, Modify, Delete, Clear the attributes associated with the Discretionary Access Control SFP
- d) Modify the behavior of the Discretionary Access Control SFP
- e) Manage ACLs].

6.1.5.6. **FMT_SMR.1 Security Roles**

- FMT_SMR.1.1 The TSF shall maintain the roles [Administrator, User].
- FMT_SMR.1.2 The TSF shall be able to associate users with roles.

6.1.6. **Protection of the TSF (FPT)**

6.1.6.1. **FPT_TDC.1 Inter-TSF Basic TSF Data Consistency**

- FPT_TDC.1.1 The TSF shall provide the capability to consistently interpret [passwords] when shared between the TSF and another trusted IT product.
- FPT_TDC.1.2 The TSF shall use [data with the newest associated timestamp] when interpreting the TSF data from another trusted IT product.

6.1.7. **Trusted Path / Channel (FTP)**

6.1.7.1. **FTP_ITC.1 Inter-TSF trusted channel**

- FTP_ITC.1.1 The TSF shall provide a communication channel between itself and another trusted IT product that is logically distinct from other communication channels and provides assured identification of its end points and protection of the channel data from modification or disclosure.
- FTP_ITC.1.2 The TSF shall permit [the TSF] to initiate communication via the trusted channel.
- FTP_ITC.1.3 The TSF shall initiate communication via the trusted channel for [HTTPS/TLS connections
 - for communications labeled 1 12 in Figure 1]

Application Note: The TOE supports TLS v1.2 as configured by the Administrator. The TOE's use of environmentally – provided cryptography is being evaluated.

6.1.7.2. **FTP_TRP.1 Trusted Path**

FTP_TRP.1.1 The TSF shall provide a communication path between itself and [local] users that is logically distinct from other communication paths and provides assured identification of its end points and protection of the communicated data from [disclosure].

FTP_TRP.1.2 The TSF shall permit [the TSF] to initiate communication via the trusted path.

FTP_TRP.1.3 The TSF shall require the use of the trusted path for [key requests, and encryption operations

• for communications labeled A, B, and C in Figure 1]

Application Note: The TOE supports TLS v1.2 as configured by the Administrator. The TOE's use of environmentally – provided cryptography is being evaluated.

6.2. **Security Assurance Requirements**

The Security Assurance Requirements for this evaluation are listed in Section 6.3.4 – Security Assurance Requirements.

6.3. **Security Requirements Rationale**

6.3.1. **Security Functional Requirements**

The following table provides the correspondence mapping between security objectives and the requirements that satisfy them.

OBJECTIVE SFR	O.MANAGE_DATA	O.MANAGE_POLICY	O.SEC_ACCESS	O.TRANS_PROT
FAU_GEN.1		✓		
FAU_SAR.1		✓		
FDP_ACC.1			✓	
FDP_ACF.1			✓	
FIA_ATD.1			✓	
FIA_UID.2			✓	
FIA_UAU.2			✓	
FMT_MSA.1			✓	
FMT_MSA.2			✓	
FMT_MSA.3			✓	
FMT_MTD.1			✓	
FMT_SMF.1		✓		
FMT_SMR.1		✓		
FPT_TDC.1	✓			✓
FTP_ITC.1				✓

FTP_TRP.1				✓	
-----------	--	--	--	---	--

Table 75 – Mapping of TOE Security Functional Requirements and Objectives

6.3.2. **Dependency Rationale**

This ST satisfies all the security functional requirement dependencies of the Common Criteria. The table below lists each SFR to which the TOE claims conformance with a dependency and indicates whether the dependent requirement was included. As the table indicates, all dependencies have been met.

SFR CLAIM	DEPENDENCIES	DEPENDENCY MET	RATIONALE
FAU_GEN.1	FPT_STM.1	YES	Satisfied by the Operational Environment (OE.TIME)
FAU_SAR.1	FAU_GEN.1	YES	
FCS_CKM.1	FCS_COP.1 FCS_CKM.4	YES	
FCS_CKM.4	FCS_CKM.1	YES	
FCS_COP.1	FCS_CKM.1 FCS_CKM.4	YES	
FDP_ACC.1	FDP_ACF.1	YES	
FDP_ACF.1	FDP_ACC.1 FMT_MSA.3	YES	
FIA_ATD.1	N/A	N/A	
FIA_UID.2	N/A	N/A	
FMT_MSA.1	FDP_ACC.1 FMT_SMR.1 FMT_SMF.1	YES	
FMT_MSA.2	FDP_ACC.1 FMT_MSA.1 FMT_SMR.1	YES	
FMT_MSA.3	FMT_MSA.1 FMT_SMR.1	YES	
FMT_MTD.1	FMT_SMF.1 FMT_SMR.1	YES	
FMT_SMF.1	N/A	N/A	
FMT_SMR.1	FIA_UID.1	YES	Although FIA_UID.1 is not included, FIA_UID.2, which is hierarchical to FIA_UID.1 is included. This satisfies this dependency.

SFR CLAIM	DEPENDENCIES	DEPENDENCY MET	RATIONALE
FPT_TDC.1	N/A	N/A	
FTP_ITC.1	N/A	N/A	
FTP_TRP.1	N/A	N/A	

Table 16 – Mapping of SFR to Dependencies and Rationales

6.3.3. **Sufficiency of Security Requirements**

The following table presents a mapping of the rationale of TOE Security Requirements to Objectives.

۷_	bjectives.	
	OBJECTIVE	RATIONALE
	O.MANAGE_DATA	The objective to ensure that the TOE will collect events from security products and non-security products deployed within a network and applies analytical processes to derive conclusions about the events is met by the following security requirements: • FPT_TDC.1 ensures that the TOE provides consistency between
		passwords used on remote IT systems and those stored/managed within the TOE.
	O.MANAGE_POLICY	The objective to ensure that the TOE provides a workflow to manage authentication and access control policies is met by the following security requirements:
		 FAU_GEN.1 and FAU_SAR.1 define the auditing capability for incidents and administrative access control and requires that authorized users will have the capability to read and interpret data stored in the audit logs FMT_SMF.1 and FMT_SMR.1 support the security functions relevant to the TOE and ensure the definition of an authorized administrator role
	O.SEC_ACCESS	This objective ensures that the TOE allows access to the security functions, configuration, and associated data only by authorized users and applications.
		 FDP_ACC.1 requires that all user actions resulting in the access to TOE security functions and configuration data are controlled FDP_ACF.1 supports FDP_ACC.1 by ensuring that access to TOE security functions, configuration data, audit logs, and account attributes is based on the user privilege level and their allowable actions
		FIA_UID.2 requires the TOE to enforce identification of all users prior to configuration of the TOE
		 FIA_UAU.2 requires the TOE to enforce authentication of all users prior to configuration of the TOE
		 FIA_ATD.1 specifies security attributes for users of the TOE FMT_MTD.1 restricts the ability to query, add or modify TSF data to authorized users.

OBJECTIVE	RATIONALE
	 FMT_MSA.1 specifies that only privileged administrators can access the TOE security functions and related configuration data. FMT_MSA.2 specifies that only secure values are accepted for security attributes listed with access control policies. FMT_MSA.3 ensures that the default values of security attributes are restrictive in nature as to enforce the access control policy for the TOE FTP_TRP.1 specifies that the trusted path exists for components HTTPS/TLS.
O.TRANS_PROT	This objective ensures that the TOE protects data in transit between elements within the TOE. This objective is met by FTP_ITC (which specifies that the trusted channel exists for components) and FTP_TRP (which ensures that the trusted path exists for components). This is also met by FPT_TDC which ensures data transported between TOE components is protected.

Table 17 – Rationale for TOE SFRs to Objectives

6.3.4. **Security Assurance Requirements**

The assurance security requirements for this Security Target are taken from Part 3 of the CC. These assurance requirements compose an Evaluation Assurance Level 3 (EAL3). The assurance components are summarized in the following table:

CLASS HEADING	CLASS_FAMILY	DESCRIPTION
	ADV_ARC.1	Security Architecture Description
ADV: Development	ADV_FSP.3	Functional Specification with Complete Summary
	ADV_TDS.2	Architectural Design
AGD: Guidance	AGD_OPE.1	Operational User Guidance
Documents	AGD_PRE.1	Preparative Procedures
	ALC_CMC.3	Authorization Controls
	ALC_CMS.3	Implementation representation CM coverage
ALC: Lifeguale Cuppent	ALC_DEL.1	Delivery Procedures
ALC: Lifecycle Support	ALC_DVS.1	Identification of Security Measures
	ALC_LCD.1	Developer defined life-cycle model
	ALC_FLR.3	Flaw Reporting Procedures
	ATE_COV.2	Analysis of Coverage
ATE. Toota	ATE_DPT.1	Testing: Basic Design
ATE: Tests	ATE_FUN.1	Functional Testing
	ATE_IND.2	Independent Testing - Sample
AVA: Vulnerability Assessment	AVA_VAN.2	Vulnerability Analysis

Table 18 – Security Assurance Requirements at EAL3

6.3.5. **Security Assurance Requirements Rationale**

The ST specifies Evaluation Assurance Level 3. EAL3 was chosen because it is based upon good commercial development practices with thorough functional testing. EAL3 provides the developers and users a moderate level of independently assured security in conventional commercial TOEs. The threat of malicious attacks is not greater than low, the security environment provides physical protection, and the TOE itself offers a very limited interface, offering essentially no opportunity for an attacker to subvert the security policies without physical access. The product was augmented to comply with ALC_FLR.3 in order to document and address requirements for remediation and reporting of faults that may be discovered in the product after release.

6.3.6. **Security Assurance Requirements Evidence**

This section identifies the measures applied to satisfy CC assurance requirements.

SECURITY ASSURANCE REQUIREMENT	EVIDENCE TITLE
ADV_ARC.1 Security Architecture	NetIQ Identity Manager 4.9.0
Description	Security Architecture (ADV_ARC)
ADV_FSP.3 Functional Specification	NetIQ Identity Manager 4.9.0
with Complete Summary	Functional Specification (ADV_FSP)
ADV_TDS.2 Architectural Design	NetIQ Identity Manager 4.9.0
TIDV_1D3.2 Memteetural Design	Architectural Design (IDM TDS)
AGD_OPE.1 Operational User	NetIQ Identity Manager 4.9.0
Guidance ³	Operational User Guidance and Preparative
	Procedures Supplement (AGD-IGS)
ACD DDF 1D and a large large	NetIQ Identity Manager 4.9.0
AGD_PRE.1Preparative Procedures	Operational User Guidance and Preparative Procedures Supplement (AGD-IGS)
	NetIQ Identity Manager 4.9.0
ALC_CMC.3 Authorization Controls	Configuration Management Processes and
	Procedures (ALC_CM)
ALC_CMS.3 Implementation	NetIQ Identity Manager 4.9.0
representation CM coverage	Configuration Management Processes and
	Procedures (ALC_CM)
ALC DEL 1 Dell' en December 1	NetIQ Identity Manager 4.9.0
ALC_DEL.1 Delivery Procedures	Secure Delivery Processes and Procedures (ALC_DEL)
ALC_DVS.1 Identification of Security	NetIQ Identity Manager 4.9.0
Measures	Development Security Measures (ALC_DVS)
ALC_LCD.1 Developer defined life-	NetIQ Identity Manager 4.9.0
cycle model	Life Cycle Development Process (ALC_LCD)
ALC_FLR.3: Systematic Flaw	NetIQ Identity Manager 4.9.0
Remediation	Flaw reporting Procedures (ALC_FLR)

³ Additional documents can be found in Appendix A

SECURITY ASSURANCE REQUIREMENT	EVIDENCE TITLE
ATE_COV.2 Analysis of Coverage	NetIQ Identity Manager 4.9.0 Test Plan and Coverage Analysis (ATE)
ATE_DPT.1 Testing: Basic Design	NetIQ Identity Manager 4.9.0 Test Plan and Coverage Analysis (ATE)
ATE_FUN.1Functional Testing	NetIQ Identity Manager 4.9.0 Test Plan and Coverage Analysis (ATE)

Table 19 – Security Assurance Rationale and Measures

7. TOE Summary Specification

This section presents the Security Functions implemented by the TOE.

7.1. **TOE Security Functions**

The security functions performed by the TOE are as follows:

- Security Management
- Security Audit
- Identification and Authentication
- User Data Protection
- Protection of the TSF
- Trusted Path / Channels

7.2. **Security Audit**

The TOE generates the following audit data:

- Start-up and shutdown of the audit functions (instantiated by startup of the TOE)
- User login/logout
- Login failures

The TOE provides the Administrator with the capability to read all audit data generated within the TOE via the console. The GUI provides a suitable means for an Administrator to interpret the information from the audit log.

The A.TIMESOURCE is added to the assumptions on operational environment, and OE.TIME is added to the operational environment security objectives. The time and date provided by the operational environment are used to form the timestamps. The TOE ensures that the audit trail data is stamped when recorded with a dependable date and time received from the OE (operating system). In this manner, accurate time and date is maintained on the TOE.

The Security Audit function is designed to satisfy the following security functional requirements:

- FAU GEN.1
- FAU SAR.1

7.3. **Identification and Authentication**

The IDM console application provides user interfaces that administrators may use to manage TOE functions. The operating system and the database in the TOE Environment are queried to individually authenticate administrators or users. The TOE maintains authorization information that determines which TOE functions an authenticated administrators or users (of a given role) may perform.

The TOE maintains the following list of security attributes belonging to individual users:

- User Identity (i.e., username)
- Authentication Status (whether the IT Environment validated the username/password)
- Privilege Level (Administrator or User)

The Identification and Authentication function is designed to satisfy the following security functional requirements:

- FIA_ATD.1
- FIA UAU.2
- FIA_UID.2

7.4. **User Data Protection**

The TOE implements a discretionary access control policy to define what roles can access particular functions of the TOE. All access and actions for system reports, component audit logs, TOE configuration, operator account attributes (defined in FIA_ATD.1) are protected via access control list. When a user requests to perform an action on an object, the TOE verifies the role associated with the username. Access is granted if the user (or group of users) has the specific rights required for the type of operation requested on the object.

Identity Manager can enforce password policies on incoming passwords from connected systems and on passwords set or changed through the User Application password self-service. If the new password does not comply, you can specify that Identity Manager not accept the password. This also means that passwords that don't comply with your policies are not distributed to other connected systems.

In addition, can enforce password policies on connected systems. If the password being published to the Identity Vault does not comply with rules in a policy, you can specify that Identity Manager not only does not accept the password for distribution, but actually resets the noncompliant password on the connected system by using the current Distribution password in the Identity Vault.

The User Data Protection function is designed to satisfy the following security functional requirements:

- FDP ACC.1
- FDP ACF.1

7.5. **Security Management**

The TOE maintains the operator roles described in the following table. The individual roles are categorized into two main roles: the Administrator and the User.

ROLE	MANAGEMENT FUNCTIONS
Administrator	A user who has rights to configure and manage all aspects of the TOE
User	The user's capabilities can be configured to:
	View hierarchical relationships between User objects View and edit user information (with appropriate rights). Search for users or resources using advanced search criteria (which can be saved for later reuse). Recover forgotten passwords.

Table 80 – Roles and Functions

Only an Administrator can determine the behavior of, disable, enable, and modify the behavior of the functions that implement the Discretionary Access Control SFP. The TPE ensures only secure values are accepted for the security attributes listed with Discretionary Access Control SFP.

The Security Management function is designed to satisfy the following security functional requirements:

- FMT_MTD.1
- FMT MSA.1
- FMT MSA.2
- FMT MSA.3
- FMT SMF.1
- FMT_SMR.1

7.6. **Protection of the TSF**

User passwords are protected as they move between the components of the TOE. A TLS v1.2 session is established in order that TSF data is not modified in transmission.

NetIQ eDirectory supports multiple types of passwords. But the type used by IDM is the Universal Password.

The universal password is encrypted using a user specific random key, the user random key is wrapped with the tree key which is in turn wrapped by machine specific NICI storage key. By default, the keys are 3 DES keys. eDirectory 9.2 supports AES 256-bit keys which the administrator can enable.

The process is described in more detail in this documentation.

https://www.netiq.com/documentation/edirectory92/edir admin/data/b1j5uudh.html#b1j5uvyc

IDM has LDAP extensions to retrieve/change/set Universal Passwords. These are available only over LDAPS.

This satisfies the SFR FPT_TDC.1.

7.7. **Trusted Path / Channels**

The Trusted Path/Channels function is designed to satisfy the following security functional requirements:

- FTP_ITC.1 the TOE supports establishment of trusted channels for communicating TOE entities using HTTPS.
- FTP_TRP.1 the TOE provides a trusted path for TOE Users, using HTTPS

7.7.1. **Trusted Channel**

The TOE provides a trusted channel between the TOE and external web servers.

Trusted channels are implemented using HTTPS. The TOE supports TLS v1.2. The TOE supports the following TLS cipher suites, as defined in RFC 5246:

- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
- TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

7.7.2. Trusted Path

The TOE environment provides a trusted path for TOE administrators and TOE users to communicate with the TOE. The trusted path is implemented using HTTPS. The TOE's implementation of TLS is described in the previous section (Trusted Channel).

7.8. **Cryptographic Support**

OpenSSL Object Module in the environment is used to provide any cryptographic functions. The following OpenSSL Algorithm Certificates provide the cryptographic functions for the trusted path and channel HTTPS/TLS v1.2 sessions. These algorithms are associated with the CMVP

certificate #2473, which is on the historical list as the module has been sunset. The algorithms listed are those that are associated with operating systems used by IDM.

CAVP Certificates

Operation	Algorithm	Key Size	Standard	CAVP Certificate
Encryption and Decryption in support of TLS	AES GCM mode (Advanced Encryption Standard)	128, 256	FIPS PUB 197	AES 3264
Key Generation in support of TLS	DRBG (Deterministic Random Bit Generation)	Hash DRBG	SP 800-90A	DRBG 723
Key agreement in support of TLS	ECDHE		SP800-56A	CVL 472
Keyed-Hash Message Authentication in support of TLS	HMAC-SHA2-256, HMAC-SHA2-384	256, 384	FIPS PUB 198-1	HMAC 2063
Secure Hash in support of TLS	SHA-256, SHA-384	SHA -256, SHA 384	FIPS PUB 180-4	SHS 2702
Asymmetric cryptography in support of TLS	RSA	2048	FIPS PUB 186-4	RSA 1664

Table 21 – CAVP